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ABSTRACT
This article discusses regression analysis of mixed interval-censored
failure time data. Such data frequently occur across a variety of
settings, including clinical trials, epidemiologic investigations, and
many other biomedical studies with a follow-up component. For
example, mixed failure times are commonly found in the two
largest studies of long-term survivorship after childhood cancer, the
datasets that motivated this work. However, most existing methods
for failure time data consider only right-censored or only interval-
censored failure times, not the more general case where times may
be mixed. Additionally, among regression models developed for
mixed interval-censored failure times, the proportional hazards for-
mulation is generally assumed. It is well-known that the proportional
hazards model may be inappropriate in certain situations, and alter-
natives are needed to analyze mixed failure time data in such cases.
To fill this need, we develop amaximum likelihood estimation proce-
dure for the proportional odds regressionmodelwithmixed interval-
censored data. We show that the resulting estimators are consistent
and asymptotically Gaussian. An extensive simulation study is per-
formed to assess the finite-sample properties of the method, and
this investigation indicates that the proposed method works well
for many practical situations. We then apply our approach to exam-
ine the impact of age at cranial radiation therapy on risk of growth
hormone deficiency in long-term survivors of childhood cancer.
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1. Introduction

Interval-censored failure time data arise when a failure time of interest is not observed
exactly but is only known to lie within an interval [12]. This type of data appears across
many different research fields, including epidemiologic investigations,medical studies, and
social science experiments. An extensive body of literature is available for the statistical
analysis of interval-censored failure time data [4,19]. However, less work has focused on
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the case ofmixed interval-censored data, which occurs when a dataset consists of amixture
of exact and interval-censored failure times.

Mixed interval-censored data occur very commonly in real-world situations, often due
to ubiquitous data challenges such asmissing data or integration ofmultiple data resources.
For example, interval-censored outcomes arise frequently in the Childhood Cancer Sur-
vivor Study (CCSS), one of the largest datasets available for studying the late effects of
childhood cancer treatment. This ongoing multi-institutional study follows over 30,000
childhood cancer survivors and 5000 healthy siblings by distributing periodic question-
naires that ask participantswhether a number of specificmedical conditions have occurred.
If the condition has occurred, subjects are further asked the age of first occurrence. A single
follow-up questionnaire can contain 140 such questions querying cardiovascular, respira-
tory, hormonal, urinary, digestive, and neurological issues, among other conditions. The
time to event outcomes are more difficult to collect than the binary indicators of event
occurrence for a variety of reasons, for example, because subjects have difficulty remem-
bering exact dates. Thus some event occurrences are not paired with an event time, and
the missing event time can only be inferred to fall between the cancer diagnosis and the
time of a first follow-up or between two consecutively recorded follow-ups, resulting in
an interval-censored outcome. The rate of missingness in event time over a single 140-
item CCSS questionnaire can rise as high as 55%. Therefore, the time-to-event data from
an given outcome consists of a mixture of interval-censored event times and exact event
times.

Datasets integrated frommultiple resources may also result in mixed interval-censored
data. Such an issue arises in the the St. Jude Lifetime Cohort (SJLIFE), another large sur-
vivorship study that follows a cohort of over 5,000 childhood cancer survivors who were
treated for their cancer at St. Jude Childrens Research Hospital (St. Jude). Late effects
related to cancer treatments are recorded through two different modalities in SJLIFE -
ascertained retrospectively via St. Jude medical records or identified prospectively during
SJLIFE visits. For events that are recorded in the medical records, exact event times are
available. For diseases newly detected during SJLIFE visits, the onset time is unknown but
can be inferred to fall between the last and current visits, resulting in interval-censored
data.

Mixed interval-censored data arise frequently in other biomedical studies that require
periodic follow-up, especially for chronic diseases. Depending on themonitoring schedule
and recollection of subjects, age at event onset can generally be known for some patients
and only inferred to fall within an interval for others. Additional prominent examples
include the Framingham Heart Disease Study [15], the Danish Diabetes Study [18], and
the Sudan HIV/AIDS Study[7].

Although mixed interval-censored data arise frequently in practice, there exists only
limited literature on their analysis. Huang [10] considered the nonparametric maximum
likelihood estimation (MLE) of a distribution function based on mixed interval-censored
data; Zhao et al. [24,25] developed some generalized log-rank tests for the nonparamet-
ric comparison of survival functions. For regression analysis specifically, the only existing
reports appear to be [13] and [8], which investigated the fitting of the proportional hazards
model and a parametricCoxmodel, respectively. It is well known that the proportional haz-
ards model may not be appropriate in some situations, and alternative regression models
for mixed interval-censored data are needed for such scenarios.
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Unlike the proportional hazards model, the proportional odds model specifies that
covariates have multiplicative effects on the odds function rather than on the hazard
function. Under the proportional odds model, the hazard ratio approaches unity as time
increases, so it is usually preferred when the covariate effects diminish over time. Another
situation in which the proportional odds model is often preferred is when there are
many ties in the data [3]. The proportional odds model has been discussed extensively
[1,11,14,17,22] for the case of right-censored or interval-censored data, but an established
approach for mixed interval-censored data does not yet exist. In this work, we develop the
MLE approach for fitting a proportional odds model to mixed interval-censored data.

The remaining sections of the article are organized as follows. In Section 2, we intro-
duce some notation and describe the proportional odds model as well as the structure
of mixed interval-censored data. In Section 3, we develop an MLE procedure for fitting
the proportional odds model to mixed interval-censored data. In particular, we show that
the resulting estimators of both regression parameters and the baseline distribution func-
tion are asymptotically consistent and Gaussian under some mild regularity conditions. In
Section 4, we present the results obtained from an extensive simulation study conducted
to assess the finite-sample performance of the proposed method. These simulations sug-
gest that the approach works well for many practical situations. In Section 6, we apply the
approach to the data arising from the SJLIFE study described above, and in Section 6 we
present a discussion and concluding remarks.

2. Notation, models, and likelihood function

Consider a failure time study that consists of n subjects. For subject i, let Ti denote the
failure time of interest, and suppose that there exists a d−dimensional vector of covariates
denoted by Zi. Also suppose that given Zi, Ti follows the proportional odds model

logitFT(t|Zi) = logitF0(t)+ Z′
iβ0. (1)

Here FT(t|Zi) denotes the conditional distribution function of T given Zi, F0 denotes a
baseline distribution function, β0 denotes a vector of regression parameters, and logit(x) =
log x/(1 − x). Under the above model, it is easy to see that the conditional survival density
functions, given Zi, have the forms

ST(t|Zi) = 1
1 + H0(t) exp(Z′

iβ0)

and

fT(t|Zi) = exp(Z′
iβ0)

[1 + H0(t) exp(Z′
iβ0)]2

h0(t),

respectively. In the above, H0(t) = F0(t)/(1 − F0(t)), which is assumed to be a strictly
increasing function with continuous positive derivative function h0(t) = dH0(t)/ dt.

In the following,wewill assume that there exist twopotential examination times for each
subject, denoted by Ui and Vi with Ui ≤ Vi. The event time is left-censored if Ti ≤ Ui,
interval-censored if Ui < Ti ≤ Vi, or right-censored if Ti > Vi. Also, it will be assumed
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that given Zi, Ti is independent of (Ui,Vi), and the joint distribution of (Ui,Vi,Zi) does
not involve β0 and H0. Then the likelihood function of θ = (β ,H) can be written as

Ln(θ) =
n∏
i=1

[
exp(Z′

iβ)

[1 + H(Ti) exp(Z′
iβ)]2

h(Ti)

]δEi [
1 − 1

1 + H(Ui) exp(Z′
iβ)

]δLi

×
[

1
1 + H(Ui) exp(Z′

iβ)
− 1

1 + H(Vi) exp(Z′
iβ)

]δIi [ 1
1 + H(Vi) exp(Z′

iβ)

]δRi
,

where δEi, δLi, δIi, and δRi are indicator functions that take the value 1 if Ti is observed
exactly, left-censored, interval-censored, or right-censored, respectively. Thus δEi + δLi +
δIi + δRi = 1. DefineH{t} = H(t)− H(t−) to be the size of the jump inH at time point t.
Then the log-likelihood function of θ has the form

ln(θ) =
n∑

i=1
δEi

[
Z′
iβ − 2 log(1 + H(Ti) exp(Z′

iβ))+ log(H{Ti})
]

+ δLi log
[
1 − 1

1 + H(Ui) exp(Z′
iβ)

]
+ δRi log

[
1

1 + H(Vi) exp(Z′
iβ)

]

+ δIi log
[

1
1 + H(Ui) exp(Z′

iβ)
− 1

1 + H(Vi) exp(Z′
iβ)

]
.

3. Maximum likelihood estimation

In this section, we discuss the MLE of the parameter θ based on the log-likelihood func-
tion ln(θ). Let 0 = T(0) < T(1) < · · · denote the distinct ordered times among all exactly
observed Ti. Following [10], note that for any finite sample size n, F0(t), and hence H0(t)
is determined in the likelihood above only at the exactly observed failure times and at the
examination times (Ui,Vi) for i = 1, . . . , n. For subject i, define δi = 1 if the exact failure
time is available for subject i and δi = 0 otherwise. Then the log-likelihood function of θ
can be rewritten as

ln(θ) =
n1∑
i=1

log[ST(T(i)|Zi)− ST(T(i−1))|Zi)] +
n2∑
i=1

log[ST(Ui|Zi)− ST(Vi|Zi)]

=
n1∑
i=1

log
[{1 + H(T(i−1)) exp(Z′

iβ)}−1 − {1 + H(T(i)) exp(Z′
iβ)}−1]

+
n2∑
i=1

log
[{1 + H(Ui) exp(Z′

iβ)}−1 − {1 + H(Vi) exp(Z′
iβ)}−1] ,

where n1 = ∑n
i=1 δi, and n2 = n − n1. Let t1 < · · · < tM denote the M distinct times

among all observed Ti, Ui, and Vi, and define H = (H(t1), . . . ,H(tM)). It is apparent
that for the maximization of ln(θ), one needs to focus only on the values of H at the
tm, m = 1, . . . ,M, and consider the step functions that jump only at the tm. Also, let
(Li,Ri] denote the observed interval that contains the time to event for the ith subject.
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For subject i, define αim = 1 if (Li,Ri] contains tm and αim = 0 otherwise. Also, define
hm = H(tm)− H(tm−1) and γm = log hm. It follows that

ln(β , γ ) =
n∑

i=1
log

[
αi1 +

M∑
m=1

(αim+1 − αim){1 + H(tm) exp(Z′
iβ)}−1

]

=
n∑

i=1
log

⎡
⎣αi1 +

M∑
m=1

(αim+1 − αim){1 +
m∑
j=1

exp(γj + Z′
iβ)}−1

⎤
⎦ ,

where γ = (γ1, . . . , γM)′. Thus one can maximize the log-likelihood function above by
using, for example, the Newton-Raphson algorithm. To maximize ln(β , γ ) using Newton-
Raphson, we need to calculate the first and second derivatives of ln(β , γ ). The detailed
formulas are provided in the Appendix.

Let S0(t) denote the true baseline survival function for the failure time T. Let β̂n
and Ĥn denote the maximum-likelihood estimators of β and H0 defined above and take
Ŝn(t) = 1/(1 + Ĥn(t)), the maximum-likelihood estimator of the baseline survival func-
tion.Also let τ denote the longest follow-up time and S0(t)denote the true baseline survival
function of the Ti. The two theorems below give the asymptotic properties of β̂n and Ŝn.
Together with Lemma 1 in theAppendix, we can obtain the identifiability of the parameters
for this model and describe the following asymptotic behavior of the proposed maximum
likelihood estimator.

Theorem3.1: Suppose that conditionsC1–C5 given in the Appendix hold. Then as n → ∞,
we have

β̂n → β0 a.s. and sup
t∈[0,τ ]

|Ŝn(t)− S0(t)| → 0 a.s.

Theorem3.2: Suppose that conditionsC1–C5 given in the Appendix hold. Then as n → ∞,
we have

√
n(β̂n − β0) → N(0,�),

√
n(Ŝn − S0) → W,

where � denotes the asymptotic covariance matrix of β̂n and W denotes a zero-mean
Gaussian process.

The proof of the results given above is sketched in the Appendix. For inference about
β0, one needs to estimate�. One way to do this is to use the the Fisher information matrix
I(β̂ , γ̂ ), which appears to be reasonable based on the numerical results below.

4. Simulation

In this section, we present some results obtained from an extensive simulation study
conducted to assess the finite-sample performance of the method proposed above. We
considered a situation with one covariate Zi generated from the uniform distribution over
(0, 1). We then used model (1) to generate failure times under Case 1:H0(t) = t and Case
2:H0(t) = (1 + t/2)2 − 1. For the observation times, we generated the first time pointO1i
from the uniform distribution over { 0, 1, 2, . . . , τ − 1 } and then the second time pointO2i
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Table 1. Estimation of regression parameters with case 1 for n = 200.

Proposed method exact T only Interval-censored T only Peto’s method

β p AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP

−1 0.25 −1.04 0.53 0.54 0.95 −1.06 0.88 0.85 0.97 −1.04 0.67 0.71 0.93 −1.03 0.53 0.54 0.95
0.5 −1.02 0.48 0.51 0.93 −1.02 0.61 0.62 0.94 −1.04 0.82 0.88 0.93 −1.02 0.48 0.51 0.93
0.75 −1.03 0.46 0.46 0.95 −1.02 0.50 0.49 0.97 −1.12 1.52 1.36 0.95 −1.03 0.46 0.46 0.95

−0.5 0.25 −0.52 0.54 0.55 0.95 −0.56 0.88 0.84 0.97 −0.50 0.70 0.74 0.94 −0.52 0.54 0.55 0.95
0.5 −0.52 0.49 0.49 0.95 −0.53 0.61 0.60 0.96 −0.51 0.87 0.93 0.95 −0.52 0.49 0.49 0.95
0.75 −0.52 0.46 0.45 0.96 −0.52 0.50 0.48 0.96 −0.53 1.60 1.49 0.95 −0.52 0.46 0.45 0.96

0 0.25 −0.01 0.56 0.56 0.95 −0.06 0.87 0.83 0.97 0.03 0.75 0.77 0.94 −0.01 0.56 0.56 0.95
0.5 −0.02 0.50 0.50 0.96 −0.04 0.61 0.59 0.96 0.00 0.94 0.98 0.95 −0.02 0.50 0.50 0.96
0.75 −0.01 0.46 0.45 0.96 −0.02 0.49 0.48 0.97 0.03 1.73 1.66 0.96 −0.01 0.46 0.45 0.96

0.5 0.25 0.50 0.59 0.58 0.95 0.44 0.87 0.83 0.97 0.56 0.81 0.82 0.95 0.50 0.58 0.58 0.95
0.5 0.49 0.52 0.51 0.95 0.47 0.61 0.60 0.97 0.54 1.01 1.07 0.96 0.49 0.51 0.51 0.95
0.75 0.49 0.47 0.46 0.95 0.48 0.50 0.48 0.96 0.59 1.80 1.83 0.96 0.49 0.47 0.46 0.95

1 0.25 1.01 0.62 0.61 0.96 0.94 0.88 0.83 0.97 1.10 0.89 0.88 0.96 1.01 0.61 0.60 0.96
0.5 1.00 0.53 0.53 0.96 0.97 0.62 0.60 0.96 1.09 1.12 1.16 0.96 1.00 0.53 0.53 0.96
0.75 1.00 0.48 0.47 0.95 0.98 0.50 0.48 0.97 1.30 3.57 3.87 0.97 0.99 0.47 0.47 0.95

from the uniform distribution over {O1i + 1, . . . , τ } with τ = 10. We generate the indi-
cator δi from a Bernoulli distribution with success probability p. If δi = 1 then the exact
failure time Ti is recorded. Otherwise, an interval is recorded, and if the failure time Ti
is less than O1i, then the interval is recorded as (0,O1i]. If the failure time Ti is between
O1i and O2i, then the interval is recorded as (O1i,O2i]. If the failure time Ti is greater than
O2i, then the interval is recorded as (O2i,∞). The results given below are based on 1000
replications with the sample size n = 200 or 400.

Table 1 shows the results of the estimation of the regression parameter β0 for Case 1
with n = 200, β0 = −1,−0.5, 0, 0.5, or 1, and p = 0.25, 0.5, or 0.75. The table includes
the average of point estimates β̂n (AVE), the average of the estimated standard errors of β̂n
(SEE), the sample standard deviation of β̂n (SSE), and the 95% empirical coverage proba-
bility (CP). For comparison, we also obtained the estimates that would result from fitting
proportional odds model to only the observed exact failure times or only the observed
interval-censored times. This simplified alternative discards much of the data.

One can see that the proposed estimator appears to be unbiased and that the variance
estimation and normal distribution approximations are reasonable. Furthermore, the pro-
posed method is clearly more efficient than the method that makes use of only exactly
observed or only interval-censored data. The results ofn = 400 forCase 1 and the results of
n = 200 and n = 400 for Case 2 are presented in Tables 2–4 and offer similar conclusions.

Another simplified approach for mixed interval-censored data is to transfer each exact
failure time to an interval-censored observation by adding a small amount of time on either
side of the observed point as proposed by Peto & Peto [16]. We also applied this approach
in the simulation study and fitted the proportional oddsmodel to the transformed interval-
censored data. The results are included in Tables 1–4. In Figure 1, we plotted the averages
of the proposed estimates Ĥn and the pointwise confidence bands for Case 2 with n = 400,
p = 0.75 and β = 0.5 and 1. We can see that the simplified method and the proposed
method provide similar parameter estimates, but the confidence bands of Ĥn are wider
when using the simplified approach, indicating an efficiency loss.
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Table 2. Estimation of regression parameters with Case 1 for n = 400.

Proposed method exact T only Interval-censored T only Peto’s method

β p AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP

−1 0.25 −1.01 0.37 0.36 0.96 −1.00 0.62 0.62 0.95 −1.03 0.47 0.46 0.96 −1.01 0.37 0.36 0.96
0.5 −1.01 0.34 0.33 0.96 −1.00 0.43 0.42 0.95 −1.04 0.58 0.58 0.96 −1.01 0.34 0.33 0.96
0.75 −1.01 0.32 0.32 0.96 −1.01 0.35 0.35 0.95 −1.07 0.84 0.85 0.96 −1.01 0.32 0.32 0.96

−0.5 0.25 −0.51 0.38 0.37 0.96 −0.50 0.61 0.61 0.95 −0.52 0.49 0.49 0.96 −0.51 0.38 0.37 0.96
0.5 −0.51 0.35 0.34 0.96 −0.50 0.43 0.42 0.95 −0.52 0.60 0.60 0.96 −0.50 0.35 0.34 0.96
0.75 −0.51 0.32 0.32 0.96 −0.51 0.35 0.35 0.95 −0.54 0.88 0.90 0.96 −0.51 0.32 0.32 0.96

0 0.25 −0.01 0.39 0.39 0.96 0.00 0.61 0.61 0.95 −0.02 0.52 0.52 0.96 −0.01 0.39 0.39 0.96
0.5 0.00 0.24 0.28 0.65 0.01 0.29 0.35 0.65 −0.02 0.43 0.53 0.94 0.00 0.24 0.28 0.65
0.75 −0.01 0.32 0.32 0.96 −0.01 0.35 0.35 0.95 −0.03 0.94 0.98 0.95 −0.01 0.32 0.32 0.95

0.5 0.25 0.50 0.41 0.41 0.95 0.50 0.61 0.61 0.95 0.50 0.56 0.55 0.96 0.50 0.41 0.41 0.95
0.5 0.50 0.36 0.36 0.95 0.50 0.43 0.43 0.96 0.50 0.69 0.69 0.96 0.50 0.36 0.36 0.95
0.75 0.48 0.33 0.33 0.95 0.48 0.35 0.36 0.94 0.48 1.02 1.08 0.95 0.48 0.33 0.33 0.95

1 0.25 1.00 0.43 0.43 0.95 1.00 0.61 0.62 0.95 1.00 0.61 0.60 0.96 1.00 0.43 0.43 0.95
0.5 1.00 0.37 0.37 0.95 0.99 0.43 0.43 0.96 1.01 0.76 0.76 0.96 1.00 0.37 0.37 0.95
0.75 1.00 0.33 0.34 0.95 0.99 0.35 0.36 0.95 1.06 1.13 1.26 0.94 0.99 0.33 0.34 0.95

Table 3. Estimation of regression parameters with Case 2 for n = 200.

Proposed method exact T only Interval-censored T only Peto’s method

β p AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP

−1 0.25 −1.03 0.62 0.60 0.97 −1.06 0.88 0.84 0.97 −0.99 0.87 0.87 0.95 −1.02 0.62 0.60 0.97
0.50 −1.03 0.54 0.52 0.97 −1.03 0.62 0.60 0.96 −1.02 1.12 1.08 0.95 −1.03 0.54 0.52 0.96
0.75 −1.03 0.49 0.46 0.96 −1.03 0.50 0.49 0.96 −1.01 1.77 1.70 0.94 −1.03 0.49 0.46 0.96

−0.5 0.25 −0.52 0.62 0.61 0.97 −0.56 0.87 0.83 0.97 −0.49 0.91 0.90 0.96 −0.52 0.62 0.60 0.97
0.50 −0.53 0.53 0.52 0.96 −0.53 0.61 0.60 0.96 −0.53 1.20 1.13 0.97 −0.53 0.53 0.52 0.96
0.75 −0.52 0.48 0.46 0.96 −0.52 0.50 0.48 0.96 −0.51 2.03 2.02 0.95 −0.52 0.47 0.46 0.96

0 0.25 0.00 0.64 0.62 0.96 −0.06 0.87 0.83 0.97 0.06 0.97 0.97 0.96 0.00 0.63 0.62 0.96
0.50 −0.02 0.54 0.53 0.96 −0.03 0.61 0.59 0.96 0.05 1.26 1.23 0.97 −0.01 0.54 0.53 0.96
0.75 −0.01 0.47 0.47 0.96 −0.02 0.49 0.48 0.97 0.09 2.13 2.84 0.93 −0.01 0.47 0.47 0.96

0.5 0.25 0.50 0.66 0.64 0.97 0.44 0.87 0.83 0.97 0.59 1.07 1.07 0.96 0.50 0.66 0.64 0.96
0.50 0.49 0.55 0.54 0.96 0.47 0.61 0.59 0.97 0.57 1.40 1.38 0.97 0.49 0.55 0.54 0.96
0.75 0.49 0.48 0.47 0.96 0.48 0.50 0.48 0.96 0.69 2.43 3.70 0.93 0.49 0.48 0.47 0.96

1 0.25 1.01 0.71 0.68 0.97 0.94 0.88 0.83 0.97 1.13 1.19 1.24 0.97 1.01 0.70 0.68 0.97
0.50 1.00 0.57 0.56 0.96 0.97 0.62 0.60 0.97 1.10 1.56 1.59 0.96 1.00 0.57 0.56 0.96
0.75 1.00 0.49 0.48 0.96 0.98 0.50 0.48 0.96 1.95 3.18 11.71 0.92 1.00 0.49 0.48 0.96

5. Application to SJLIFE

We applied the proposed method to a subset of the data from the SJLIFE study. One of the
primary objectives of the SJLIFE study is to evaluate endocrine-related late effects such as
growth hormone deficiency (GHD) in patients with brain irradiation. GHD is associated
with neuropsychiatric cognitive, cardiovascular, neuromuscular, metabolic, and skeletal
abnormalities, and it may increase the risk of premature death. In addition, GHD is the
hormone deficiency most likely to go undiagnosed. To obtain information about each par-
ticipant’s GHD, researchers extracted the histories of pituitary deficiencies from subjects’
medical records if available. For those who had no medical record of GHD occurrence, a
fasting blood sample was collected at the time of the SJLIFE evaluation to investigate the
presence of pituitary deficiency. More details on the study can be found in [2].
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Table 4. Estimation of regression parameters with Case 2 for n = 400.

Proposed method exact T only Interval-censored T only Peto’s method

β p AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP AVE SEE SSE CP

−1 0.25 −1.02 0.42 0.42 0.96 −1.00 0.61 0.62 0.96 −1.04 0.58 0.57 0.96 −1.02 0.42 0.42 0.96
0.5 −1.02 0.37 0.36 0.96 −1.00 0.43 0.42 0.95 −1.06 0.72 0.72 0.96 −1.01 0.37 0.36 0.96
0.75 −1.02 0.34 0.33 0.96 −1.01 0.35 0.35 0.95 −1.13 1.11 1.09 0.94 −1.02 0.33 0.33 0.96

−0.5 0.25 −0.51 0.43 0.43 0.95 −0.50 0.61 0.61 0.95 −0.52 0.61 0.62 0.95 −0.51 0.43 0.43 0.95
0.5 −0.51 0.37 0.37 0.95 −0.50 0.43 0.42 0.95 −0.53 0.76 0.77 0.95 −0.51 0.37 0.37 0.96
0.75 −0.51 0.33 0.33 0.96 −0.51 0.35 0.35 0.95 −0.58 1.16 1.20 0.95 −0.51 0.33 0.33 0.96

0 0.25 −0.01 0.44 0.45 0.95 0.00 0.61 0.61 0.95 −0.01 0.65 0.66 0.96 −0.01 0.44 0.44 0.95
0.5 −0.01 0.38 0.38 0.95 0.00 0.43 0.42 0.96 −0.02 0.82 0.83 0.96 −0.01 0.44 0.44 0.95
0.75 −0.01 0.33 0.34 0.95 −0.01 0.35 0.35 0.95 −0.05 1.25 1.33 0.95 −0.01 0.44 0.44 0.95

0.5 0.25 0.49 0.46 0.47 0.96 0.50 0.61 0.61 0.95 0.50 0.71 0.72 0.95 0.49 0.46 0.47 0.96
0.5 0.49 0.38 0.38 0.95 0.50 0.43 0.43 0.96 0.50 0.89 0.91 0.96 0.49 0.38 0.38 0.96
0.75 0.49 0.34 0.34 0.95 0.49 0.35 0.35 0.95 0.53 1.38 1.55 0.95 0.49 0.34 0.34 0.95

1 0.25 1.01 0.48 0.49 0.96 0.99 0.61 0.62 0.95 1.03 0.79 0.82 0.96 1.00 0.48 0.49 0.96
0.5 1.00 0.40 0.39 0.96 0.99 0.43 0.43 0.95 1.04 1.02 1.03 0.96 1.00 0.39 0.39 0.96
0.75 1.00 0.34 0.35 0.95 0.99 0.35 0.36 0.95 1.15 1.53 1.89 0.93 1.00 0.34 0.34 0.95

Figure 1. Estimates of the baseline function H0(t) = (1 + t/2)2 − 1.

In our work, we focused on a subgroup of participants who were younger than 10 years
old when they received cranial radiation therapy (CRT), as this population was found to
be at high-risk of GHD [2]. Our objective was to further investigate whether the risk of the
first occurrence of GHD depended on the age at CRT, i.e. whether the risk of GHD was
higher in the childhood cancer survivors who received CRT before 5 years old compared
to those survivors who received CRT when they were at least 5 years old. In total there
are 524 participants in the subgroup, and 269 experienced GHD. Among those with GHD,
113 (42%) had GHDdiagnoses in their medical record and hence provided an exact failure
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Figure 2. Estimates of the baseline survival function S0(t).

time.One hundred and fifty-six (58%) survivors hadGHD identified at SJLIFE evaluations,
and so the onset time was only known to fall in an interval between two St. Jude visits. For
the analysis, we defined Zi = 0 if the participant received CRT before 5 years old (n=301)
and Zi = 1 (n=223) otherwise. The application of the proposed method produced a β̂n of
−0.504 with the estimated standard error of 0.172. This corresponds to a p-value of 0.0033
for testing no difference in the risks of the first occurrence of GHD between the two age
groups. GHD appears to occur significantly less in the survivors who received CRT at an
older age. For comparison, using only the interval-censored data produced an estimate of
−0.473 (standard error 0.216), using only the exact failure time data produced an esti-
mate of −0.553 (0.232), and treating exact failure times as interval-censored observations
produced an estimate of −0.502 (0.194). All estimated standard errors with alternative
approaches were larger than the estimated standard error using the proposed method.

Figure 2 presents the estimated survival functions Ŝn given by the proposed method for
the two age groups.We obtained the nonparametric estimates of the two survival functions
given by [10] as well. These results suggest that the proportional odds model provides a
good fit, as the proposed and nonparametric estimates are close to each other.

6. Discussion and concluding remarks

In this paper, we discussed the regression analysis of mixed interval-censored data arising
from the proportional odds model. As detailed previously, such data arise quite frequently
inmedical studies with a follow-up component.We developed amaximum likelihood esti-
mation approach and established both the finite-sample and asymptotic properties of the
resulting estimators. The numerical results suggest that the proposed method works well
for practical situations and better than some simplified alternatives. We also applied the
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method to analyze the impact of age at CRT treatment on GHD risk in childhood cancer
survivors. Code for implementation of the ideas or the simulation is available upon request.

Future research on this problem can go in several directions. First, note that for each
subject, it was assumed that there exists two random observation time points. Such data
are often referred to as Case-2 interval-censored data [19]. A more general situation cor-
responding to this is the so-called case-K interval-censored data, where there exists K
observation points or a sequence of observation time points. It would be useful to gener-
alize the proposed method to case-K interval-censored data. In addition, the focus of this
paper is the proportional odds model. Sometimes neither the proportional odds model
or the proportional hazards model fits the data well; thus, one may consider other mod-
els, such as the additive hazards model or linear transformation model. Model checking is
another possible direction for future research.
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Appendix

A.1 Appendix 1. The first and second derivatives of ln(β, γ ).

To maximize ln(β , γ ), we need to calculate the first and second derivatives of ln(β , γ ). For this,
following [6], let bim = ∑m

j=1 exp(γj + Z′
iβ) and

wi = αi1 +
M∑

m=1
(αim+1 − αim)(1 + bim)−1 .

Then we have

Uβ(β , γ ) = ∂ ln(β , γ )
∂β

= −
n∑
i=1

w−1
i Vβ ,i,

and

Uγm(β , γ ) = ∂ ln(β , γ )
∂γm

= −
n∑
i=1

w−1
i Vγm ,i,

where

Vβ ,i = Zi
M∑

m=1
(αim+1 − αim) bim (1 + bim)−2,

and

Vγm ,i =
M∑
s=m

(αis+1 − αis) exp(γm + Ziβ) (1 + bim)−2.
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Furthermore, one can determine that

Dββ(β , γ ) = ∂2ln(β , γ )
∂β∂β ′ = −

n∑
i=1
(w−2

i Vβ ,i V ′
β ,i − w−1

i Vββ) ,

Dβγm(β , γ ) = ∂2ln(β , γ )
∂β∂γm

= −
n∑

i=1
(w−2

i Vβ ,i V ′
γm ,i − w−1

i Vβγm) ,

and

Dγmγm′ (β , γ ) = ∂2ln(β , γ )
∂γm∂γm′

= −
n∑

i=1
(w−2

i Vγm ,i V
′
γm′ ,i − w−1

i Vγmγm′ ) ,

where

Vββ = Zi Z′
i

M∑
m=1

(αim+1 − αim) bim (bim − 1) (1 + bim)−3 ,

Vβγm = Zi
M∑
s=m

(αis+1 − αis) exp(γm + Ziβ) (bis − 1) (1 + bis)−3 ,

Vγmγm′ =
M∑
s=m

(αis+1 − αis) (1 − bis) (1 + bis)−3 exp(γm + Ziβ), form = m′ ,

and

Vγmγm′ = 2 exp(γm + Ziβ) exp(γm′ + Ziβ)
M∑
s=m

(αis+1 − αis) (1 + bis)−3, form �= m′ .

A.2 Appendix 2. Proofs of Theorems 3.1 and 3.2

In this section, we will sketch the proofs of Theorems 3.1 and 3.2. Here we need the following
regularity conditions:

C1. LetB be a bounded closed subset ofRd andS a compact set. Suppose that the true value (β0, S0)
is an interior point of (B × S).

C2. Let n1, n2, n3 and n4 denote the number of subjects who have exactly observed, left-censored,
interval-censored, or right-censored observations, respectively. Suppose that

lim
n→∞

nk
n

= αk > 0 and
4∑

k=1

αk = 1.

C3. (3a.) Suppose that there exist 0 < τ0 < τ1 < ∞ such that P[τ0 ≤ U < V ≤ τ1] = 1 and 0 <
H0(τ0) < H0(τ1) < ∞. (3b.) Suppose that there exists a positive number η0 such that P(V −
U ≥ η0) = 1.

C4. The covariate Z is uniformly bounded, that is, there exists z0 > 0 such that P(‖Z‖ ≤ z0) = 1.
C5. If g(U,V)+ Z′β = 0 almost surely for some deterministic function g and vector β , then g ≡ 0

and β = 0.

Note that Conditions C1, C3 and C4 are very commonly assumed in the interval-censored data
literature. Condition C2 is not too strict because the fraction of subjects in each category data is
usually positive if we are in the mixed data setting. Condition C5 is needed for the identifiability of
the proportional odds model and the covariate Z. To prove the asymptotic properties, let Pg(X) =∫
g(x)dF(x) and Png(X) = n−1 ∑n

i=1 g(Xi) for any random variable X with distribution function F
and function g.
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Let the log-likelihood function of one sample be denoted as

l(θ) = δE
[
Z′β − 2 log(1 + H(T) exp(Z′β))+ log(H{T})]

+ δL log
[
1 − 1

1 + H(U) exp(Z′β)

]
+ δR log

[
1

1 + H(V) exp(Z′β)

]

+ δI log
[

1
1 + H(U) exp(Z′β)

− 1
1 + H(V) exp(Z′β)

]
.

Then we have the following lemma.

Lemma A.1: If l(θ) = l(θ0) a.s., then θ = θ0, where θ = (β ,H) ∈ �.

Proof: Since δE + δL + δR + δI = 1, we only prove the result when either of the four indicators
holds true. If δE = 1, then for any t ≤ τ ,∫ t

0

exp(Z′β)
1 + H(s) exp(Z′β)

dH(s) =
∫ t

0

exp(Z′β0)
1 + H0(s) exp(Z′β0)

dH0(s),

and thus logH(t)/H0(t) = Z′(β − β0) a.s. and thus θ = θ0 derived from condition C5.
Similar techniques can be applied to get the same result when δR = 1, or δL = 1 or δI = 1. This

completes the proof. �

Proof of Theorem 3.1: The proof is adapted from [9,13,20]. First we’ll show that Ĥn{t} cannot be
∞. Otherwise, if Ĥn{Ti} = ∞, then the ith log-likelihood function

< O(1)− log(Ĥn(Ti)) → −∞.

Then we show that supn Ĥn(τ ) < ∞. Set θ∗
n = (β̂n,H∗

n), where H∗
n = Ĥn/ξn, ξn = Ĥn(τ ). Then

1
n
(ln(θ̂n)− ln(θ∗

n )) = 1
n

n∑
i=1

{
δEi[−2 log(1 + ξnH∗

n(Ti) exp(Z′
iβ))+ log(ξn)]

+ 2δEi log(1 + H∗
n(Ti) exp(Z′

iβ))

+ δIi log[(1 + ξnH∗
n(Ui) exp(Z′

iβ))
−1 − (1 + ξnH∗

n(Vi) exp(Z′
iβ))

−1]

− δIi log[(1 + H∗
n(Ui) exp(Z′

iβ))
−1 − (1 + H∗

n(Vi) exp(Z′
iβ))

−1]

+ δRi[log(1 + ξnH∗
n(Vi) exp(Z′

iβ))
−1 − log(1 + H∗

n(Vi) exp(Z′
iβ))

−1]

+δLi
[
log

ξnH∗
n(Ui) exp(Z′

iβ)

1 + ξnH∗
n(Ui) exp(Z′

iβ)
− log

H∗
n(Ui) exp(Z′

iβ)

1 + H∗
n(Ui) exp(Z′

iβ)

]}

= − log ξn
1
n

n∑
i=1

δEi − 2
1
n

n∑
i=1

δEi log(ξ−1
n + H∗

n(Ti) exp(Z′
iβ))

+ 2
1
n

n∑
i=1

δEi log(1 + H∗
n(Ti) exp(Z′

iβ))

+ 1
n

n∑
i=1

δIi log[(1 + ξnH∗
n(Ui) exp(Z′

iβ))
−1 − (1 + ξnH∗

n(Vi) exp(Z′
iβ))

−1]

− 1
n

n∑
i=1

δIi log[(1 + H∗
n(Ui) exp(Z′

iβ))
−1 − (1 + H∗

n(Vi) exp(Z′
iβ))

−1]
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+ 1
n

n∑
i=1

δRi[log(1 + ξnH∗
n(Vi) exp(Z′

iβ))
−1 − log(1 + H∗

n(Vi) exp(Z′
iβ))

−1]

+ 1
n

n∑
i=1

δLi

[
log

ξnH∗
n(Ui) exp(Z′

iβ)

1 + ξnH∗
n(Ui) exp(Z′

iβ)
− log

H∗
n(Ui) exp(Z′

iβ)

1 + H∗
n(Ui) exp(Z′

iβ)

]
.

It is obvious that the last six terms are uniformly upper bounded because H∗
n is uniformly bounded

by 1 for sufficiently large n. Therefore, if ξn → ∞, then ln(θ̂n)− ln(θ∗
n ) → −∞ as n tends to infinity.

This means that for sufficiently large n, ln(θ̂n)− ln(θ∗
n ) < 0 with high probability, which contradicts

the fact that ln(θ̂n)− ln(θ∗
n ) ≥ 0 because θ̂n maximizes ln(θ).

Now we show the consistency. Let (β̂n, Ĥn) be the MLE of (β0,H0) based on the observed data,
and let (β̃n, H̃n) be theMLE of (β0,H0) based on the exact data and right-censored data, respectively.
Define Ŝn = 1/(1 + Ĥn), and S̃n = 1/(1 + H̃n). Let x = (δL, δI , u, v, z) and write

p̂(x) = p(x; β̂n, Ŝn), p̃(x) = p(x; β̃n, S̃n),

where p(x;β , S) = {1 − S(u|z)}δL{S(u|z)− S(v|z)}δI with S(·|z) = 1/(1 + Hez′β), and H = (1 −
S)/S.

Let E be the expectation given δE = δR = 0 under (β0, S0). For any (β , S) �= (β0, S0), by condi-
tion(5) and Jensen’s inequality, for every α ∈ (0, 1),

E log
[
1 + α

{
p(X;β , S)
p0(X)

− 1
}]

< 0, (A1)

where p0(X) = p(X;β0, S0). Note that p̃(x) → p0(x) for almost all x = (δL, δI , u, v, z) by the consis-
tency of (β̃n, S̃n). See [14]. For an open ballN around (β , S), define

p̃(x;N ) = sup
(β ′ ,S′)∈N

p(x;β ′, S′).

Then for a sequence of open ballsNε with radius ε shrinking to (β , S) as ε → 0, we have p̃(x;Nε) →
p(x;β , S). By (3), for ε sufficiently small andN1 = n1 + n2 sufficiently large, there exists a ηε > 0 so
that

E log
[
1 + α

{
p̃(X;Nε)

p̃(X)
− 1

}]
∧ ηε < 0. (A2)

From the definition of (θ̂n, Ŝn) and (θ̃N1 , S̃N1), after simple algebra, we have
N2∏
j=1

p̂(xj) ≥
N2∏
j=1

p̃(xj),

where N2 = n − N1. By the concavity of the function u → log u, this implies
N2∑
j=1

log
[
1 + α

{
p̂(xj)
p̃(xj)

− 1
}]

≥ 0. (A3)

For any open neighborhoodN0 of the true value (β0, S0), its complement inB × S is a closed subset
of a compact set, hence also compact. The open cover {N(β ,S), (β , S) /∈ N0} of this complement has
a finite subcover {N(β1,S1), . . . ,N(βm ,Sm)}. If (β̂n, Ŝn) is not inN0, it must be in one of the subcovers,
in which case p̃(x;N(βk ,Sk)) ≥ p̂(x) for every x. Thus by (5),

{(β̂n, Ŝn) /∈ N0} ⊂
m⋃
k=1

⎡
⎣ 1
N2

N2∑
j=1

log
[
1 + α

{
p̃(Xj;N(βk ,Sk))

p̃(Xj)
− 1

}]
∧ η(θk ,Sk) ≥ 0

⎤
⎦ .

The probability of each of the sets in the union is the probability that an average of uniformly
bounded and independent random variables is nonnegative. However these random variables have
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negative expectation by (4). By Hoeffding’s inequality , each of the probabilities is of order e−εN2 ,
where ε can be chosen equal to 2ρ2/(M − log(1 − α))2. HereM = max(η(βk ,Sk), 1 ≤ k ≤ m), and ρ
is any negative number that the expectation in (4) is less than ρ, sayN1 ≥ N, whereN is a sufficiently
large integer. Consequently,

∞∑
N2=1

sup
N1≥N

P((β̂n, Ŝn) /∈ N0) < ∞.

By aminormodification of the Borel-Cantelli lemma and condition(2), it follows that, with probabil-
ity 1, (β̂n, Ŝn) ∈ N0 eventually. By the definition of our product topology, this implies that β̂n → β0
a.s., and Ŝn converges to S0 almost surely under P(β0,S0), namely

lim
n→∞ sup

t∈[0,τ ]
|Ŝn(t)− S0(t)| = 0

almost surely. This implies, by the fact that S = 1/(1 + H),

lim
n→∞ sup

t∈[0,τ ]
|Ĥn(t)− H0(t)| = 0

almost surely. This completes the proof. �

Proof of Theorem 3.2: The proof is adapted from [5]. We check the conditions of theorem 3.3.1 of
[21]. Define a random map, ψ , as

ψ(θ)[b, g] = ∂

∂a
f

(
β + ab,H + a

∫
g dH

))∣∣∣∣
a=0

,

where f is the logarithm of the likelihood function of θ = (β ,H) based on one sample
(T,Z,U,V , δE, δR, δL, δI), specifically,

f (θ) = f (β ,H) = δE
[
Z′β − 2 log(1 + H(T) exp(Z′β))+ log(H{T})]

+ δR log
[

1
1 + H(V) exp(Z′β)

]
+ δL log

[
1 − 1

1 + H(U) exp(Z′β)

]

+ δI log
[

1
1 + H(U) exp(Z′β)

− 1
1 + H(V) exp(Z′β)

]
.

ψ(θ)[b, g] = δE

{
[1 − H(T) exp(Z′β)]Z′b

1 + H(T) exp(Z′β)
− 2

∫ T
0 g dH0 exp(Z′β)

1 + H(T) exp(Z′β)
+ g(T)

}

− δR

{∫ V
0 g dH exp(Z′β)+ H(V) exp(Z′β)Z′b

1 + H(V) exp(Z′β)

}

+ δL

{∫ U
0 g dH exp(Z′β)+ H(U) exp(Z′β)Z′b
H(U) exp(Z′β)(1 + H(U) exp(Z′β))

}

+ δI

{
[1 − H(U)H(V) exp(2Z′β)]Z′b

(1 + H(U) exp(Z′β))(1 + H(V) exp(Z′β))

+ (1 + H(V) exp(Z′β))
∫ U
0 g dH

(H(V)− H(U))(1 + H(U) exp(Z′β))

− (1 + H(U) exp(Z′β))
∫ V
0 g dH

(H(V)− H(U))(1 + H(V) exp(Z′β))

}
.
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Let �n(θ)[b, g] = Pnψ(θ)[b, g] and �(θ)[b, g] = Pψ(θ)[b, g]. It is easy to prove that ψ(θ)[b, g] is
Lipschitz in θ . Following lemma 7.1 of [9], one can prove that

{ψ(θ)[b, g] : ‖b‖ ≤ 1, g ∈ G, ‖β − β0‖2 + ‖H − H0‖2 < δ}
is P0 Donsker for some δ > 0 and

sup
‖b‖≤1,g∈G

P0(ψ(θ)[b, g] − ψ(θ0)[b, g])2 → 0 as θ → θ0.

Hence, condition(3.3.2) of theorem 3.3.1 of [21] is satisfied.
Now we prove that �̇(θ0) is continuously invertable. Following the proof of Theorem 2 in [23],

we only need to prove that, if ψ(θ0)[b, g] = 0 almost surely, then b = 0, g = 0. By letting δE = 1,
we obtain that

[1 − H0(T) exp(Z′β0)]Z′b
1 + H0(T) exp(Z′β0)

− 2
∫ T
0 g dH0(T) exp(Z′β0)
1 + H0(T) exp(Z′β0)

+ g(T) = 0.

Let ε = H0(T) exp(Z′β0), a = exp(−Z′β0), g = gH−1
0 , then we have

1 − ε

1 + ε
Z′b − 2

∫ T
0 g(t) dH0(t) exp(Z′β0)

1 + ε
+ g(T) = 0.

Thus,

(1 − ε)Z′b − 2
∫ ε

0
g(sa) ds + g(εa)(1 + ε) = 0.

By taking the second derivative with respect to ε, we get

a2g′′(εa)(1 + ε) = 0,

hence g′′(εa) = 0. Let g(x) = c1x + c2, we have

(1 − ε)Z′b − 2
∫ ε

0
(c1sa + c2) ds + (c1aε + c2)(1 + ε) = 0,

namely
(1 − ε)Z′b − c2ε + c1aε + c2 = 0.

Thus

− Z′b − c2 + c1a = 0

Z′b + c2 = 0.

Consequently, b = 0, c1 = 0, and c2 = 0, which means b = 0, g = 0. When δR = 1, we obtain

− 1
[1 + H0(V) exp(Z′β0)]

[∫ V

0
g dH0 exp(Z′β0)+ H0(V) exp(Z′β0)Z′b

]
= 0.

Thus H−1
0 (V)

∫ V
0 g dH0 + Z′b = 0. It then follows from condition 5 that b = 0 and g = 0. When

δL = 1, we have ∫ U

0
g dH0 exp(Z′β0)+ H0(U) exp(Z′β0)Z′b = 0.

ThusH−1
0 (U)

∫ U
0 g dH0 + Z′b = 0. From condition 5, we get b = 0 and g = 0. Finally, when δI = 1,

we have[
H0(U)+ H0(U)H2

0(V) exp(2Z
′β0)− H0(V)− H0(V)H2

0(U) exp(2Z
′β0)

]
Z′b

+ (1 + H0(V) exp(Z′β0))2
∫ U

0
g dH0 − (1 + H0(U) exp(Z′β0))2

∫ V

0
g dH0 = 0.
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By taking the derivative with respect to U and V successively, we obtain that

(2H0(V) exp(Z′β0)− H0(U) exp(Z′β0))Z′b + g(U)[1 + H0(V) exp(Z′β0)]

− g(V)[1 + H0(U) exp(Z′β0)] = 0.

By the symmetry of U and V, we also have

(2H0(U) exp(Z′β0)− H0(V) exp(Z′β0))Z′b + g(V)[1 + H0(U) exp(Z′β0)]

− g(U)[1 + H0(V) exp(Z′β0)] = 0.

Then it is easy to see that
[H0(U)+ H0(V)]Z′b = 0,

thus b = 0. Therefore,

(1 + H0(V) exp(Z′β0))2
∫ U

0
g dH0 − (1 + H0(U) exp(Z′β0))2

∫ V

0
g dH0 = 0.

By taking the derivative with respect to U and V successively, we have

[g(U)H0(V)− g(V)H0(U)] exp(Z′β0)+ g(U)− g(V) = 0,

which implies that g = 0.
By similar arguments to [11], one can show that �n(θ̂n)[b, g] = op(n−1/2) and thus the fourth

condition is satisfied since�(θ0)[b, g] = 0. This completes the proof. �
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